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A note on nonlinear acoustic resonances in 
rectangular cavities 
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(Received 16 August 1977 and in revised form 9 January 1978) 

The problem of the resonant response of a gas contained in a two-dimensional rect- 
angular cavity to periodic (sinusoidal) velocity excitations at  the walls of the cavity 
is investigated. It is found that in some neighbourhood of each resonant frequency 
there are discontinuous pressure disturbances (shock waves). The present theory is an 
extension of Chester’s theory on resonances in closed tubes. 

1. Introduction 
Following work by Chester (1964) and the present author (1975, 1976a, b,  1977), we 

investigate the resonant response of a gas contained in a two-dimensional rectangular 
cavity to vibrations of the walls. If the corners of the cavity are defined by 

(X,Y) = ( O , O ) ,  (a,  01, (0, b) ,  (a, b )  

we have the following acoustic eigenfrequencies: 

For each of these eigenfrequencies there is a resonant field consisting of a superposition 
of the four waves 

where 
a m  +,,, = arctan (- -) 
b n  * 

For simplicity we aesume that the vibration of the wall is sinueoidal in time. The 
problem is no more difficult for any other periodic time dependence of the wall oscilla- 
tions. However, since the problem is nonlinear and therefore solutions cannot be 
directly superposed, a special assumption is inevitable. Without essential loss of 
generality we define the boundary conditions by 

(3) u(0, y, t )  = 0, w(x, 0, t )  = 0, 

u(a, y, t )  = uw(y) cos wt, w(x, 6 ,  t )  = WW(X) cos wt, 

where u and w are the x and the y components of the particle velocity, respectively. 
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We use small amplitude expansions 

I c ,+c  = c ,+c ,+c ,+  ..., 
u = u,+u,+ ..., 
v = v,+v,+ ... 

(4) 

for the sound speed and the components of the particle velocity. In the interest of 
generality, we do not introduce powers of the Mach number M into these expansions, 
since the Mach number dependence of the different orders in (4) is not clear at this 
stage. This problem has been discussed by the author (1975, 1976b). Nevertheless the 
assumption of small amplitudes implies that M < 1. The first-order (acoustic) quant- 
ities can be expressed as follows: 

c1 = &(Y - 1) {f- + +f++ +f- - +f+-L 
u1 = * cos $ {f-+ -f++ +f- - -f+->, 
vl = * sin $ {f-+ -f++ -f- - +f+->, 

where y is t.he ratio of specific heats and, for convenience, the superscript (m, n) has 
been dropped. As the first-order velocity components do not satisfy the boundary 
conditions ( 3 )  at exact resonance, u and v have to be computed to second order. 

2. Resonance equation and solutions 

equations, the following equations can be derived (after considerable manipulation) : 
When the expressions ( 5 )  are inserted in the second-order terms of the Eulerian 

a 2  
C O S 4  @ [f?, +fE- -f:+ -f?-l+ G ( x ,  Y, t ) ,  0 (Ul+%?) = 32c, (6) 

Y+1 

(7) 
Y+l a 2  

0 (q + flz) = -sin $ [f!+ -f!- -f:+ +f:-I+ w, y, t ) ,  3 2c0 

where 

- sin2$ [f-+f- - -f++f+-]” 1 
3-Y + - cos $ {[f-, +f- -1 [f++ +f+-I’ - [f++ +f+-I [f-+ +f- -1’1’ 1 6c0 

cos $ sin2 q5 - {f-+f;- -f+$+ -f++fL- +f- -f;+>’, 
4c0 

3 - Y  
1 6c0 

cos2 $ sin $ 

+ - sin ${[f-+ +f+-I [f++ +f- -1’ - [f++ +f--1 [f-+ +f+-1’1’ 

(9) - {f-+fL- -f- -fl+ -f++fi- +f+-fi+>’ 
4c0 

and the primes indicate derivatives with respect to time. 
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Integrating (6) and (7) leads to 
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a 
at 

[z~~~$+ysin$]-[f!++f:+] 

A and B are lengthy expressions which can be obtained in a straightforward way from 
the relations 

of-+f++ = 4f-I-+fi+) f-+f-- = 4sin2Qfl+f'-, 

of-+f+- = 4c0s2Qf'+f;-, !J f++f-- = 4Cos2$f;+fl_-, 

of++f+- = 4sin2Qf;+f;-, of--f+- = 4f--f+-. 

A(O,y , t )  = A ( a , y , t )  = 0,  B(x,O,t) = B(x,b, t )  = 0 

I 1  

It turns out that 

(12) 

when all the boundary conditions are satisfied. This is a remarkable result which has 
been pointed out before by Seymour & Mortell(l973) for a one-dimensional resonator. 
The functions A and B can be interpreted as terms which account for the interaction 
of the four waves. The physical meaning of (12) can then be explained as follows. 

A wave path starting at  a certain point on one of the walls is reflected once at  each of 
the other walls before it comes back to the starting point, The effects of the wave field 
on the travelling time of a wavelet which travels along this path just cancel when the 
wavelet has gone through a full cycle. 

The discussion of the solutions (10) and (1 1 ) is similar to that given by Chester (1 964) 
and Keller (1 976 b) .  Here considerations are restricted to excitation functions (wall 
displacements) which are sinusoidal in time and exactly resonant. At the walls of the 
cavity the terms on the right-hand sides of (10) and ( l l ) ,  together with the first-order 
velocity components given by (5),  have to be equated to the corresponding velocity 
components defined by the boundary conditions (3). Owing to (12), A and B do not 
contribute. It can easily be shown that this procedure leads to a resonance equation of 
the form 

where E is a constant which has to be determined later. 
The velocity amplitudes uw(y)  and vW(x) at the walls can be split into a pair of 

resonant excitation functions uWR and vwR and a pair of non-resonant (linear) excita- 
tion functions uWA and wwA: 

df2(t)/dt  = $cos wt, (13) 

Uw = UWR+UWA, Vw = VWR+VWA. 

Introducing (13) in (10) and (11) gives 

v 2 = v w , = ~ ( - l ) m a 2 b s i n 2 ~ c o s  Y + l  
16c, 
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FIGURE 1. Typical solution for the resonant pressure disturbances. The pressure disturbance p 
is plotted vs. the spatial co-ordinates z and y for the mode (1, 1) at wt = 0 . 6 ~ .  

Equation (13) can be recognized as the resonance equation which has been discussed 
extensively by Chester (1 964). Having solved (1 3) we can easily deduce the first-order 
pressure disturbance 

p l ( x , y , t ) = - s  2 ‘B sc --- ’ ( )  4 w co ((;’:[ 
I)  
I) 

where 

(17) 

COST if sin7 > 0, 

sc (7) = 0 if sin7 = 0, 1 - COST if sin7 < 0. 

A typical solution (for m = n = l7  wt = 0 . 6 ~ )  is shown in figure 1. 
With the help of (1 5 )  and (1 6) we can calculate the time-averaged power input ( W ) :  
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I n  this equation vWR and uWE can be replaced by vw and uw [see remarks above (14)]. 
This leads to a new equation which can be compared with (19). Using the definitions 
( 3 ) ,  the comparison leads to the determination of 6 :  

b 
E =  { 32c’ i ( - l )n/  u,(y)cos 

(Y + l ) a b  0 

From (14)-( 19) it is easy to show that uWA and v W A  do not contribute to ( W )  in the 
limit M -+ 0 and the definition ( 3 )  is in no way restricted. However, if we require that 
M is small (but not infinitesimally small) it is clear that uw and vw should not be too 
strongly’ different from uWR and vWR since otherwise the Mach-number expansion 

would become meaningless. 
Prom the physical point of view we can argue as follows. If the time-averaged distri- 

bution of the power input along the walls of the cavity is considerably different from 
that produced by u, ,  and vwR, then the energy-redistribution mechanism dominates 
the problem. I n  this case we can think in terms of second-order waves running along 
the main wave fronts, thus distributing the energy (which is fed in at the walls) con- 
tinuously over the whole wave field. This more difficult problem would essentially 
correspond to an extension to two-dimensional cavities of the theory on subharmonic 
resonances in closed tubes by the present author (1975). Note that in this case the 
Mach-number dependence of the orders in the expansions (4) would be different. 

To include solutions for which the frequency is slightly different from a resonant 
frequency we could replacef(t) in (10) and (1  1) byf(t) + uAw, where Aw is the deviation 
from a certain resonant angular frequency and a is some suitable constant. As in case 
of a one-dimensional resonator there is a frequency range around every resonant fre- 
quency where the solutions are discontinuous if frictional damping is neglected. The 
width of these ranges where shock waves occur is O(Aw/w)  = O(M*).  There the 
amplitudes of the disturbances are larger by a factor O(M-*)  than in the range where 
linear acoustic theory applies. 
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